owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere:

- (1) From any grid casting facility any gases that contain lead in excess of 0.40 milligram of lead per dry standard cubic meter of exhaust (0.000176 gr/dscf).
- (2) From any paste mixing facility any gases that contain in excess of 1.00 milligram of lead per dry standard cubic meter of exhaust (0.00044 gr/dscf).
- (3) From any three-process operation facility any gases that contain in excess of 1.00 milligram of lead per dry standard cubic meter of exhaust (0.00044 gr/dscf).
- (4) From any lead oxide manufacturing facility any gases that contain in excess of 5.0 milligrams of lead per kilogram of lead feed (0.010 lb/ton).
- (5) From any lead reclamation facility any gases that contain in excess of 4.50 milligrams of lead per dry standard cubic meter of exhaust (0.00198 gr/dscf).
- (6) From any other lead-emitting operation any gases that contain in excess of 1.00 milligram per dry standard cubic meter of exhaust (0.00044 gr/dscf).
- (7) From any affected facility other than a lead reclamation facility any gases with greater than 0 percent opacity (measured according to Method 9 and rounded to the nearest whole percentage).
- (8) From any lead reclamation facility any gases with greater than 5 percent opacity (measured according to Method 9 and rounded to the nearest whole percentage).
- (b) When two or more facilities at the same plant (except the lead oxide manufacturing facility) are ducted to a common control device, an equivalent standard for the total exhaust from the commonly controlled facilities shall be determined as follows:

$$S_e = \sum_{a=1}^{N} S_a (Q_{sd_a}/Q_{sd_T})$$

Where:

 $S_{\rm e}{=}{\rm i}s$ the equivalent standard for the total exhaust stream.

 $S_a = is$ the actual standard for each exhaust stream ducted to the control device.

N=is the total number of exhaust streams ducted to the control device.

 Q_{sda} =is the dry standard volumetric flow rate of the effluent gas stream from each facility ducted to the control device.

 Q_{sdT} =is the total dry standard volumetric flow rate of all effluent gas streams ducted to the control device.

§60.373 Monitoring of emissions and operations.

The owner or operator of any lead-acid battery manufacturing facility subject to the provisions of this subpart and controlled by a scrubbing system(s) shall install, calibrate, maintain, and operate a monitoring device(s) that measures and records the pressure drop across the scrubbing system(s) at least once every 15 minutes. The monitoring device shall have an accuracy of ± 5 percent over its operating range.

§60.374 Test methods and procedures.

- (a) In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in §60.8(b).
- (b) The owner or operator shall determine compliance with the lead standards in §60.372, except §60.372(a)(4), as follows:
- (1) Method 12 shall be used to determine the lead concentration and, if applicable, the volumetric flow rate (Q_{sda}) of the effluent gas. The sampling time and sample volume for each run shall be at least 60 minutes and 0.85 dscm (30 dscf).
- (2) When different operations in a three-process operation facility are ducted to separate control devices, the lead emission concentration (C) from the facility shall be determined as follows:

$$C = \left[\sum_{a=1}^{n} \left(C_{s} Q_{sdi}\right)\right] / \sum_{a=1}^{n} Q_{sda}$$

where:

C=concentration of lead emissions for the entire facility, mg/dscm (gr/dscf).

 C_a =concentration of lead emissions from facility ''a'', mg/dscm (gr/dscf).

 $Q_{sda} = volumetric$ flow rate of effluent gas from facility "a", dscm/hr (dscf/hr).